首页 | 本学科首页   官方微博 | 高级检索  
   检索      


OB Fold-containing Protein 1 (OBFC1), a Human Homolog of Yeast Stn1, Associates with TPP1 and Is Implicated in Telomere Length Regulation
Authors:Ma Wan  Jun Qin  Zhou Songyang  and Dan Liu
Institution:From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and ;the §Cell-based Assay Screening Service Core, Baylor College of Medicine, Houston, Texas 77030
Abstract:The telosome/shelterin, a six-protein complex formed by TRF1, TRF2, RAP1, TIN2, POT1, and TPP1, functions as the core of the telomere interactome, acting as the molecular platform for the assembly of higher order complexes and coordinating cross-talks between various protein subcomplexes. Within the telosome, there are two oligonucleotide- or oligosaccharide-binding (OB) fold-containing proteins, TPP1 and POT1. They can form heterodimers that bind to the telomeric single-stranded DNA, an activity that is central for telomere end capping and telomerase recruitment. Through proteomic analyses, we found that in addition to POT1, TPP1 can associate with another OB fold-containing protein, OBFC1/AAF44. The yeast homolog of OBFC1 is Stn1, which plays a critical role in telomere regulation. We show here that OBFC1/AAF44 can localize to telomeres in human cells and bind to telomeric single-stranded DNA in vitro. Furthermore, overexpression of an OBFC1 mutant resulted in elongated telomeres in human cells, implicating OBFC1/AAF4 in telomere length regulation. Taken together, our studies suggest that OBFC1/AAF44 represents a new player in the telomere interactome for telomere maintenance.Telomeres are specialized linear chromosome end structures, which are regulated and protected by networks of protein complexes (14). Telomere length, structure, and integrity are critical for the cells and the organism as a whole. Telomere dysregulation can lead to DNA damage response, cell cycle checkpoint, genome instability, and predisposition to cancer (59). Mammalian telomeres are composed of double-stranded (TTAGGG)n repeats followed by 3′-single-stranded overhangs (10). In addition to the telomerase that directly mediates the addition of telomere repeats to the end of chromosomes (11, 12), a multitude of telomere-specific proteins have been identified that form the telosome/shelterin complex and participate in telomere maintenance (9, 13). The telosome in turn acts as the platform onto which higher order telomere regulatory complexes may be assembled into the telomere interactome (14). The telomere interactome has been proposed to integrate the complex and labyrinthine network of protein signaling pathways involved in DNA damage response, cell cycle checkpoint, and chromosomal end maintenance and protection for telomere homeostasis and genome stability.Of the six telomeric proteins (TRF1, TRF2, RAP1, TIN2, POT1, and TPP1) that make up the telosome, TRF1 and TRF2 have been shown to bind telomeric double-stranded DNA (15, 16), whereas the OB3 fold-containing protein POT1 exhibits high affinities for telomeric ssDNA in vitro (17, 18). Although the OB fold of TPP1 does not show appreciable ssDNA binding activity, heterodimerization of TPP1 and POT1 enhances the POT1 ssDNA binding (17, 18). More importantly, POT1 depends on TPP1 for telomere recruitment, and the POT1-TPP1 heterodimer functions in telomere end protection and telomerase recruitment. Notably, the OB fold of TPP1 is critical for the recruitment of the telomerase (18). Disruption of POT1-TPP1 interaction by dominant negative inhibition, RNA interference, or gene targeting could lead to dysregulation of telomere length as well DNA damage responses at the telomeres (1821).In budding yeast, the homolog of mammalian POT1, Cdc13, has been shown to interact with two other OB fold-containing proteins, Stn1 and Ten1, to form a Cdc13-Stn1-Ten1 (CST) complex (22, 23). The CST complex participates in both telomere length control and telomere end capping (22, 23). The presence of multiple OB fold-containing proteins from yeast to human suggests a common theme for telomere ssDNA protection (4). Indeed, it has been proposed that the CST complex is structurally analogous to the replication factor A complex and may in fact function as a telomere-specific replication factor A complex (23). Notably, homologs of the CST complex have been found in other species such as Arabidopsis (24), further supporting the notion that multiple OB fold proteins may be involved in evolutionarily conserved mechanisms for telomere end protection and length regulation. It remains to be determined whether the CST complex exists in mammals.Although the circuitry of interactions among telosome components has been well documented and studied, how core telosome subunits such as TPP1 help to coordinate the cross-talks between telomere-specific signaling pathways and other cellular networks remains unclear. To this end, we carried out large scale immunoprecipitations and mass spectrometry analysis of the TPP1 protein complexes in mammalian cells. Through these studies, we identified OB fold-containing protein 1 (OBFC1) as a new TPP1-associated protein. OBFC1 is also known as α-accessory factor AAF44 (36). Sequence alignment analysis indicates that OBFC1 is a homolog of the yeast Stn1 protein (25). Further biochemical and cellular studies demonstrate the association of OBFC1 with TPP1 in live cells. Moreover, we showed that OBFC1 bound to telomeric ssDNA and localized to telomeres in mammalian cells. Dominant expression of an OBFC1 mutant led to telomere length dysregulation, indicating that OBFC1 is a novel telomere-associated OB fold protein functioning in telomere length regulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号