首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal Structure of Bacillus anthracis Transpeptidase Enzyme CapD
Authors:Ruiying Wu  Stefan Richter  Rong-guang Zhang  Valerie J Anderson  Dominique Missiakas  and Andrzej Joachimiak
Institution:From the Biosciences Division, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439 and ;the §Department of Microbiology, University of Chicago, Chicago, Illinois 60637
Abstract:Bacillus anthracis elaborates a poly-γ-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the γ-glutamyltranspeptidase CapD with and without α-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-γ-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-γ-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro427, Gly428, and Gly429 activate the catalytic residue of the enzyme, Thr352, and stabilize an oxyanion hole via main chain amide hydrogen bonds.Spores of Bacillus anthracis are the causative agents of anthrax disease (1). Upon entry into their hosts, spores germinate and replicate as vegetative bacilli (1). The formation of a thick capsule encasing vegetative forms enables bacilli to escape granulocyte0 and macrophage-mediated phagocytosis, and the pathogen eventually disseminates throughout all tissues of an infected host (2, 3). Bacilli secrete lethal and edema toxins, which cause macrophage necrosis and precipitate anthrax death (47). The genes providing for toxin and capsule formation are carried on two large virulence plasmids, pXO1 and pXO2, respectively (8, 9). Loss of any one plasmid leads to virulence attenuation, a feature that has been exploited for the generation of vaccine-type strains (1014).Unlike polysaccharide-based capsules that are commonly found in bacterial pathogens, the capsular material of B. anthracis is composed of poly-γ-d-glutamic acid (PDGA)3 (3). All the genes necessary for capsule biogenesis are located in the capBCADE gene cluster on plasmid pXO2 (1519). CapD is the only protein of this cluster that is located on the bacterial surface (16). CapD shares sequence similarity with bacterial and mammalian γ-glutamyl transpeptidases (GGTs; EC 2.3.2.2) (17). GGTs belong to the N-terminal nucleophile hydrolases (Ntn) family (Protein Structure Classification (Class (C), Architecture (A), Topology (T) and Homologous superfamily (H)) (CATH) id 3.60.60.10) (20). These enzymes assemble as a single polypeptide chain and acquire activity by undergoing autocatalytic processing to heterodimer.Bacterial GGTs catalyze the first step in glutathione degradation. For example, Helicobacter pylori GGT removes glutamate from glutathione tripeptide via the formation of a γ-glutamyl acyl enzyme. This intermediate is resolved by the nucleophilic attack of a water molecule, causing the release of γ-glutamate (21, 22). Mammalian enzymes transfer the γ-glutamyl intermediate to the amino group of a peptide, thereby completing a transpeptidation reaction (23). The B. anthracis CapD precursor is also programmed for autocatalytic cleavage (17). Similar to mammalian GGTs, CapD also catalyzes a transpeptidation reaction; however, this reaction promotes the covalent linkage of PDGA to the bacterial envelope (16, 24). We have recently demonstrated the cell wall anchor structure of capsule filaments in the envelope of B. anthracis, identifying an amide bond between the terminal carboxyl group of PDGA and the side amino group of m-diaminopimelic acid cross-bridges within muropeptides (24). The CapD-catalyzed transpeptidation reaction could be recapitulated in vitro using purified recombinant CapD, γ-d-Glun peptide, and muropeptide substrates (24). In the absence of the physiological nucleophile (muropeptides), CapD acyl intermediates can be resolved by the nucleophilic attack of water to generate hydrolysis products.Here, we report the high resolution crystal structure of CapD in the absence and presence of a glutamate dipeptide and compare it with the known structures of H. pylori and Escherichia coli GGTs. By combining structural, genetic, and biochemical approaches, we identify the unique features of CapD that distinguish the protein from GGTs and detect several residues that are important for CapD autocatalytic cleavage and PDGA processing. This structural information will further the development of small molecule inhibitors that disrupt CapD activity and that may be useful as anti-infective therapies for anthrax.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号