首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sac3 Is an Insulin-regulated Phosphatidylinositol 3,5-Bisphosphate Phosphatase: GAIN IN INSULIN RESPONSIVENESS THROUGH Sac3 DOWN-REGULATION IN ADIPOCYTES*
Authors:Ognian C Ikonomov  Diego Sbrissa  Takeshi Ijuin  Tadaomi Takenawa  and Assia Shisheva
Institution:From the Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201 and ;the §Department of Lipid Biochemistry, Kobe University School of Medicine, 650-0017 Kobe, Japan
Abstract:Insulin-regulated stimulation of glucose entry and mobilization of fat/muscle-specific glucose transporter GLUT4 onto the cell surface require the phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) pathway for optimal performance. The reduced insulin responsiveness observed under ablation of the PtdIns(3,5)P2-synthesizing PIKfyve and its associated activator ArPIKfyve in 3T3L1 adipocytes suggests that dysfunction of the PtdIns(3,5)P2-specific phosphatase Sac3 may yield the opposite effect. Paradoxically, as uncovered recently, in addition to turnover Sac3 also supports PtdIns(3,5)P2 biosynthesis by allowing optimal PIKfyve-ArPIKfyve association. These opposing inputs raise the key question as to whether reduced Sac3 protein levels and/or hydrolyzing activity will produce gain in insulin responsiveness. Here we report that small interfering RNA-mediated knockdown of endogenous Sac3 by ∼60%, which resulted in a slight but significant elevation of PtdIns(3,5)P2 in 3T3L1 adipocytes, increased GLUT4 translocation and glucose entry in response to insulin. In contrast, ectopic expression of Sac3WT, but not phosphatase-deficient Sac3D488A, reduced GLUT4 surface abundance in the presence of insulin. Endogenous Sac3 physically assembled with PIKfyve and ArPIKfyve in both membrane and soluble fractions of 3T3L1 adipocytes, but this remained insulin-insensitive. Importantly, acute insulin markedly reduced the in vitro C8-PtdIns(3,5)P2 hydrolyzing activity of Sac3. The insulin-sensitive Sac3 pool likely controls a discrete PtdIns(3,5)P2 subfraction as the high pressure liquid chromatography-measurable insulin-dependent elevation in total 3H]inositol-PtdIns(3,5)P2 was minor. Together, our data identify Sac3 as an insulin-sensitive phosphatase whose down-regulation increases insulin responsiveness, thus implicating Sac3 as a novel drug target in insulin resistance.Insulin simulation of glucose uptake in fat and muscle, which is mediated by the facilitative fat/muscle-specific glucose transporter GLUT4, is essential for maintenance of whole-body glucose homeostasis (17). In basal states GLUT4 is localized in the cell interior, cycling slowly between the plasma membrane and one or more intracellular compartments. Insulin action profoundly activates movements of preformed postendosomal GLUT4 storage vesicles toward the cell surface and their subsequent plasma membrane fusion, thereby increasing the rate of glucose transport >10-fold. Defective signaling/execution of GLUT4 translocation is considered to be a common feature in insulin resistance and type 2 diabetes (8, 9). However, the molecular and cellular regulatory mechanisms whereby insulin activates GLUT4 membrane dynamics and glucose transport are still not fully understood. More than 60 protein and phospholipid intermediate players are currently implicated in orchestrating the overall process (17). A central role is attributed to the highest phosphorylated member of the phosphoinositide (PI)3 family, i.e. phosphatidylinositol (PtdIns) (3,4,5)P3 (3). PtdIns(3,4,5)P3 is generated at the cell surface by the action of wortmannin-sensitive class 1A PI3K that is activated via the insulin-stimulated IR/IR receptor substrate signaling pathway. Inositol polyphosphate 5-phosphatases SHIP or SKIP and 3-phosphatase PTEN rapidly convert PtdIns(3,4,5)P3 to PtdIns(3,4)P2 and PtdIns(4,5)P2, respectively, thereby terminating insulin signal through class 1A PI3K (1013). The class 1A PI3K-opposing function of these lipid phosphatases has provided an appealing prospect that inhibition of their hydrolyzing activities could produce significant efficacy in the treatment of type 2 diabetes and obesity (1416).It has recently become apparent that signals by other PIs act in parallel with that of PtdIns(3,4,5)P3 in integrating the IR-issued signal with GLUT4 surface translocation (3, 4). One such signaling molecule is PtdIns(3,5)P2, whose functioning as a positive regulator in 3T3L1 adipocyte responsiveness to insulin has been supported by several lines of experimental evidence. Thus, expression of dominant-negative kinase-deficient mutants of PIKfyve, the sole enzyme for PtdIns(3,5)P2 synthesis (17, 18), inhibits insulin-induced gain of surface GLUT4 without noticeable aberrations of cell morphology (19). Likewise, reduction in the intracellular PtdIns(3,5)P2 pool through siRNA-mediated PIKfyve depletion reduces GLUT4 cell-surface accumulation and glucose transport activation in response to insulin (20). Concordantly, loss of ArPIKfyve, a PIKfyve activator that physically associates with PIKfyve to facilitate PtdIns(3,5)P2 intracellular production (21, 22), also decreases insulin-stimulated glucose uptake in 3T3L1 adipocytes (20). Combined ablation of PIKfyve and ArPIKfyve produces a greater decrease in this effect, correlating with a greater reduction in the intracellular PtdIns(3,5)P2 pool (20). Finally, pharmacological inhibition of PIKfyve activity powerfully reduces the net insulin effect on glucose uptake (23). These observations indicate positive signaling through the PtdIns(3,5)P2 pathway and suggest that arrested PtdIns(3,5)P2 turnover might potentiate insulin-regulated activation of glucose uptake.Sac3, a product of a single-copy gene in mammals, is a recently characterized phosphatase implicated in PtdIns(3,5)P2 turnover (24). Our observations in several mammalian cell types have revealed that Sac3 plays an intricate role in the PtdIns(3,5)P2 homeostatic mechanism. It is a constituent of the PtdIns(3,5)P2 biosynthetic PIKfyve-ArPIKfyve complex and facilitates the association of these two (24, 25). Intriguingly, only if the PIKfyve-ArPIKfyve-Sac3 triad (known as the “PAS complex”) is intact will the PIKfyve enzymatic activity be activated (25). Thus, Sac3 not only catalyzes PtdIns(3,5)P2 turnover but also promotes PtdIns(3,5)P2 synthesis by functioning as an adaptor for the efficient association of PIKfyve with, and activation by, ArPIKfyve (25). Given these two seemingly opposing inputs, a critical question is whether reduction in Sac3 protein levels or phosphatase activity would facilitate or mitigate insulin action on glucose uptake and GLUT4 translocation. We demonstrate here that reduced levels of Sac3 potentiate, whereas ectopic expression of active Sac3 phosphatase reduces insulin responsiveness of GLUT4 translocation and glucose transport in 3T3L1 adipocytes. Whereas insulin action does not affect the PIKfyve kinase-Sac3 phosphatase association, it markedly inhibits the Sac3 hydrolyzing activity. We suggest that increased PtdIns(3,5)P2 local availability through Sac3 phosphatase inhibition links insulin signaling to its effect on GLUT4 vesicle dynamics and glucose transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号