首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Dimerization in the Catalytic Properties of the Escherichia coli Disulfide Isomerase DsbC
Authors:Silvia A Arredondo  Tiffany F Chen  Austen F Riggs  Hiram F Gilbert  and George Georgiou
Institution:From the Departments of Chemical Engineering, ;§Biomedical Engineering, and ;‡‡Molecular Genetics and Microbiology, ;Institute for Cell and Molecular Biology, and ;Section of Neurobiology, School of Biological Sciences, University of Texas, Austin, Texas 78712 and ;the **Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
Abstract:The bacterial protein-disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two α-helical linkers, and two opposing thioredoxin fold catalytic domains. The functional significance of the two catalytic domains of DsbC is not well understood yet. We have engineered heterodimer-like DsbC derivatives covalently linked via (Gly3-Ser) flexible linkers. We either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Variants having a single active catalytic site display significant levels of isomerase activity. Furthermore, mDsbCH45D]-dimD53H], a DsbC variant lacking an entire catalytic domain but with an intact dimerization domain, also showed isomerase activity, albeit at lower levels. In addition, the absence of the catalytic domain allowed this protein to catalyze in vivo oxidation. Our results reveal that two catalytic domains in DsbC are not essential for disulfide bond isomerization and that a determining feature in isomerization is the availability of a substrate binding domain.Disulfide bonds are critical for the proper folding and structural stability of many exocytoplasmic proteins. The Dsb family of thiol:disulfide oxidoreductase enzymes catalyzes oxidative protein folding in the periplasm of Escherichia coli by means of two independent pathways (13). In the DsbA-DsbB oxidation pathway, DsbA, a very strong oxidant, catalyzes the formation of disulfide bonds on newly translocated proteins (4). The DsbA disulfide is rapidly recycled by DsbB, a membrane protein that transfers electrons from DsbA onto quinones (57). In the DsbC-DsbD isomerization pathway, non-native disulfides are reduced or rearranged by DsbC. DsbC is maintained in a reduced, catalytically active state via the transfer of electrons from the inner membrane protein DsbD that in turn accepts electrons from thioredoxin 1 and ultimately from NADPH (via thioredoxin reductase) within the cytoplasm (8, 9). Large kinetic barriers keep the oxidation and isomerization pathways isolated, preventing the establishment of a futile cycle of electron transfer. Accordingly, reactions between enzymes of the two pathways, for example the oxidation of DsbC by DsbB or the reduction of DsbA by DsbD, are 103–107-fold slower than the physiologically relevant DsbA-DsbB and DsbC-DsbD reactions (10). Nonetheless, the kinetic barrier between DsbB and DsbC can be breached by introducing mutations that result in structural changes in DsbC (11, 12).DsbC is a homodimer with each monomer comprising an N-terminal dimerization domain and a C-terminal thioredoxin-like catalytic domain fused by an α-helical linker. The crystal structure of DsbC reveals that the two monomers come together to form a V-shaped protein. The inner surface of the resulting cleft is patched with uncharged and hydrophobic residues suggesting an important role in the binding of substrate proteins. The active sites comprising the sequence Cys98-Gly99-Tyr100-Cys101 in each of the monomeric subunits are located in the arms of the “V” facing each other (13). Isomerization involves an attack onto a substrate disulfide by Cys98 resulting in the formation of a mixed disulfide, which then is resolved by either another cysteine from the substrate or by Cys101 from DsbC (14, 15). Besides its isomerase activity, DsbC is also known to display chaperone activity preventing protein aggregation during refolding (16). In E. coli, disulfide bond isomerization is the limiting step in the oxidative folding of many heterologous proteins that contain multiple cysteines. Overexpression of DsbC has been shown to enhance the yield of proteins such as human nerve growth factor, human tissue plasminogen activator (tPA)2 and immunoglobulins (1719).DsbC is topologically analogous to the eukaryotic protein-disulfide isomerase (PDI). The structural similarities between the two enzymes may have resulted from convergent evolution by thioredoxin-like domain replication in the case of PDI and domain recruitment in DsbC (20, 21). PDI comprises two thioredoxin-like catalytic domains (a and a′) separated by two non-catalytic domains (b and b′), in addition to a c domain (22). In PDI, the catalytic domains are different and functionally nonequivalent (23). Substrate binding is mediated primarily by the b′ domain; the two catalytic domains, a and a′, can catalyze oxidation of small model peptides indicating that they must also have low substrate binding affinity (24).The DsbC monomer is essentially devoid of RNase A isomerase activity (25). Sun and Wang (44) reported that DsbC with one catalytic site impaired by carboxymethylation is also essentially inactive but, in separate studies, Zapun et al. (26) did not detect cooperativity between the two catalytic sites indicating that they function independently of each other (26). Moreover, unlike PDI, the significance of the putative peptide binding cleft of DsbC on disulfide isomerization has not been ascertained. However, while DsbA or TrxA with a PDI active site dipeptide (CGHC) display very little isomerase activity in vitro and in vivo (2729), we recently showed that upon fusion to a dimerization region that provides a putative substrate binding surface (the E. coli peptidyl proline isomerase FkpA) they acquire the ability to assist the folding of periplasmically expressed multidisulfide heterologous proteins (30).In the present work, we engineered heterodimer-like covalently linked DsbC derivatives in which one of the catalytic sites has been inactivated (Fig. 1A) or one of the catalytic domains has been entirely removed while maintaining the intact peptide binding cleft (which is normally formed by association of the N-terminal domains of the two monomers) (Fig. 3A). We show that DsbC forced monomers with one functional active site, or with one thioredoxin domain only, display significant isomerization activity. Interestingly, the latter variant is partially reduced in vivo indicating that the presence of both thioredoxin domains is important for the avoidance of protein oxidation by DsbB.Open in a separate windowFIGURE 1.A, protein structure of DsbC, and molecular models of mDsbC-mDsbC and the single active site covalently linked mutants. Dimerization domains are shown in gray, thioredoxin domains in black, and the active sites in white. B, gel filtration FPLC of DsbC and linked variants. Purified proteins were run on a SuperdexTM 200 column in PBS, 10% glycerol buffer.Open in a separate windowFIGURE 3.A, molecular model of mDsbC-dim. Dimerization domains are shown in gray, thioredoxin domain in black, and catalytic site in white. B, gel filtration FPLC of mDsbC-dim as compared with DsbC. Purified proteins were run on a SuperdexTM 200 column in PBS, 10% glycerol buffer. C, MALS measurement of the molar masses of the components of mDsbC-dim together with their hydrodynamic radii. The data show monomeric, dimeric, and tetrameric states. The relative concentrations were determined by the refractive index differences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号