首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure of the Plasmodium falciparum Circumsporozoite Protein, a Leading Malaria Vaccine Candidate
Authors:Matthew L Plassmeyer  Karine Reiter  Richard L Shimp  Jr  Svetlana Kotova  Paul D Smith  Darrell E Hurt  Brent House  Xiaoyan Zou  Yanling Zhang  Merrit Hickman  Onyinyechukwu Uchime  Raul Herrera  Vu Nguyen  Jacqueline Glen  Jacob Lebowitz  Albert J Jin  Louis H Miller  Nicholas J MacDonald  Yimin Wu  and David L Narum
Abstract:The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (Rh 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21–25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.Malaria caused by Plasmodium falciparum is a serious global health issue, resulting in an estimated 1.5 million deaths annually, primarily among infants and young children. Ongoing multifaceted global intervention strategies to control malaria include drug treatment, insecticide usage, bed-net use, and vaccine development. However, parasite and mosquito control measures have met with limited success resulting from an increased drug and insecticide resistance within the Plasmodia and mosquito populations, respectively. Vaccine development represents an encouraging approach given that previous animal and human studies using irradiated sporozoites demonstrated the feasibility of producing an efficacious vaccine (13). Although the exact immunologic correlates of protection remain elusive, an abundance of evidence indicates that protection against liver stage parasites is complex, involving multiple immune mechanisms (411).To date, the majority of the pre-erythrocytic stage vaccine development has focused on the circumsporozoite protein (CSP),2 the predominant surface antigen on sporozoites. CSP can be segmented into three regions as follows: the N-terminal region containing region I; the central repeat region; and the C-terminal region containing the thrombospondin-like type I repeat (TSR). Initial CSP vaccine development focused on the central repeat region that contains the immunodominant B cell epitope (12). However, vaccine constructs quickly evolved to incorporate both the central repeat region containing the B cell epitopes and the C terminus containing the TSR domain, T cell epitopes, and B cell epitopes (13, 14). Currently, the most advanced and moderately effective malaria vaccine, RTS,S, is composed of a portion of the central repeat and the C-terminal regions linked to the hepatitis B surface antigen (15). However, recent studies have highlighted the physiological importance of the N-terminal region (1619). Rathore et al. (19) not only demonstrated the role of the N-terminal region in liver cell attachment but also identified along with Ancsin and Kisilevsky (16) an epitope within the N-terminal region that interacted with liver cells through heparin sulfate (18). Moreover, this epitope was not only found to be immunogenic but the resulting antibodies were determined to be inhibitory in a sporozoite invasion assay (18). Peptides corresponding to the N-terminal region (PpCS-(22–110) and PpCS-(65–110)) were also recognized by sera obtained from individuals living in malaria-endemic regions (17).To better understand the structure of CSP and to produce good quality recombinant protein for human vaccine-directed studies, we generated full-length and near full-length recombinant CSP. We examined two expression systems, Escherichia coli and Pichia pastoris, to determine their feasibility to generate CSP. To assist the characterization of the rCSPs, we generated a panel of monoclonal antibodies (mAbs) that were characterized biologically prior to being used to examine the rCSPs. Additionally, each of the rCSP molecules was extensively biochemically and biophysically characterized. The results collated together have enabled the molecular modeling of CSP as a long flexible, rod-like protein.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号