首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic Evidence that an Endosymbiont-derived Endoplasmic Reticulum-associated Protein Degradation (ERAD) System Functions in Import of Apicoplast Proteins
Authors:Swati Agrawal  Giel G van Dooren  Wandy L Beatty  and Boris Striepen
Institution:From the Department of Cellular Biology and ;§Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602 and ;the Department of Molecular Microbiology, Washington University, St. Louis, Missouri 63110
Abstract:Most apicomplexan parasites harbor a relict chloroplast, the apicoplast, that is critical for their survival. Whereas the apicoplast maintains a small genome, the bulk of its proteins are nuclear encoded and imported into the organelle. Several models have been proposed to explain how proteins might cross the four membranes that surround the apicoplast; however, experimental data discriminating these models are largely missing. Here we present genetic evidence that apicoplast protein import depends on elements derived from the ER-associated protein degradation (ERAD) system of the endosymbiont. We identified two sets of ERAD components in Toxoplasma gondii, one associated with the ER and cytoplasm and one localized to the membranes of the apicoplast. We engineered a conditional null mutant in apicoplast Der1, the putative pore of the apicoplast ERAD complex, and found that loss of Der1Ap results in loss of apicoplast protein import and subsequent death of the parasite.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号