A novel pathway for transport and metabolism of a fluorescent phosphatidic acid analog in yeast |
| |
Authors: | Trotter P J |
| |
Affiliation: | Institute for Cellular and Molecular Biology and Division of Nutritional Sciences, The University of Texas, Austin, TX 78712, USA |
| |
Abstract: | Phosphatidic acid is a central intermediate of biosynthetic lipid metabolism as well as an important signaling molecule in the cell. These studies assess the internalization, or retrograde transport , and metabolism of phosphatidic acid in yeast using a fluorescent analog. An analog of phosphatidic acid fluorescently labeled at the sn -2 position with N-4-nitrobenz-2-oxa-1, 3-diazole-aminocaproic acid (NBD-phosphatidic acid) was introduced to yeast cells by spontaneous transfer from phospholipid vesicles. Transport and metabolism of the NBD-phosphatidic acid were then monitored by fluorescence spectrophotometry, fluorescence microscopy and routine biochemical methods. Primary metabolites of the NBD-phosphatidic acid in yeast were found to be NBD-diacylgycerol and NBD-phosphatidylinositol. Experiments in cells possessing different levels of phosphatidate phosphatase activity suggest that conversion of the NBD-phosphatidic acid to NBD-diacylglycerol is not a pre-requisite for internalization in yeast. Internalization is sensitive to decreased temperature, but neither ATP depletion nor a sec6-4 mutation, which interrupts endocytosis, has an affect. Thus, internalization of NBD-phosphatidic acid apparently occurs via a non-endocytic route. These characteristics of retrograde transport of NBD-phosphatidic acid in yeast differ significantly from transport of other NBD-phospholipids in yeast as well as NBD-phosphatidic acid transport in mammalian fibroblasts. |
| |
Keywords: | fluorescence membrane phosphatidic acid phospholipid transport yeast |
本文献已被 PubMed 等数据库收录! |
|