首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nuclear beta-catenin localization is not sufficient for canonical Wnt signaling activation in human meianoma cell lines
Authors:Kulikova K V  Posviatenko A V  Gnuchev N V  Georgiev G P  Kibardin A V  Larin S S
Abstract:In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called beta-catenin. Mutations promoting beta-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers, but rarely observed in melanomas. Nevertheless, beta-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why, the aim of the investigation was to elucidate the relation between beta-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular beta-catenin localization, and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of beta-catenin does not always correspond to active status canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear beta-catenin canonical Wnt signaling can't be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, the pathway-targeted potential antineoplastic therapy requires the formation of a "molecular pattern of cancer" for localization of the defect in Wnt signaling cascade in the each case.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号