首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition
Authors:CECILIA DUPRÈ  ,CARLY J. STEVENS&dagger  &Dagger  ,TRAUTE RANKE,ALBERT BLEEKER§  ,CORD PEPPLER-LISBACH¶  ,DAVID J. G. GOWING&Dagger  ,NANCY B. DISE&dagger  ,EDU DORLAND&#  ,ROLAND BOBBINK, MARTIN DIEKMANN
Affiliation:Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen, Germany,;Department of Environmental and Geographical Science, Manchester Metropolitan University, Manchester M15 GD, UK,;The Open University, Walton Hall, Milton Keynes MK7 6AA, UK,;Department of Air Quality &Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten, The Netherlands,;Department of Biology and Environmental Sciences, University of Oldenburg, PO Box 2503, DE-26111 Oldenburg, Germany,;Utrecht University, Institute of Environmental Biology, Section of Landscape Ecology, PO Box 80084, 3508 TB Utrecht, The Netherlands,;B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen, The Netherlands
Abstract:Our study investigates the negative impact of nitrogen (N) deposition on species richness in acidic grasslands, based on a temporal comparison of vegetation data spanning a period of almost 70 years. We compiled a large data base of plots assigned to the Violion caninae grassland type, composed of managed, but unfertilized semi-natural grasslands on nutrient-poor, acidic soils. In total 1114 plots, mainly from Great Britain, the Netherlands and Germany, were compiled, dating back to 1939. Environmental site information included geographical and soil (mean Ellenberg values) variables as well as estimates of cumulative N and sulphur (S) deposition since 1939. Statistical analyses were carried out separately for the data subsets from the three regions. In all regions, the vegetation differentiation was mainly related to soil acidity and nutrient availability, as well as to the year of sampling and the cumulative amounts of N and S deposition. Plot-species richness of vascular plants and bryophytes (analysed for Great Britain only) decreased with time and analyses suggest these are affected by various factors, notably soil pH, but also latitude and cumulative N deposition. The latter explained more of the variation in species number than the year of sampling and cumulative S deposition, which supports the interpretation that the decline in species richness is mainly caused by increasing N availability and less by altered management and soil acidification. For Great Britain and Germany, cumulative N deposition showed a strong negative relationship with several biodiversity measures, especially the proportion of dicots, whereas it was positively related to the proportion of grass species. In general, our results give temporal evidence for the negative effect of N deposition on species richness in semi-natural vegetation.
Keywords:bryophytes    soil acidity    sulphur deposition    vascular plants    Violion grasslands
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号