首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a novel intermediate filament-linked N-cadherin/gamma-catenin complex involved in the establishment of the cytoarchitecture of differentiated lens fiber cells
Authors:Leonard Michelle  Chan Yim  Menko A Sue
Institution:Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
Abstract:Tissue morphogenesis and maintenance of complex tissue architecture requires a variety of cell-cell junctions. Typically, cells adhere to one another through cadherin junctions, both adherens and desmosomal junctions, strengthened by association with cytoskeletal networks during development. Both β- and γ-catenins are reported to link classical cadherins to the actin cytoskeleton, but only γ-catenin binds to the desmosomal cadherins, which links them to intermediate filaments through its association with desmoplakin. Here we provide the first biochemical evidence that, in vivo, γ-catenin also mediates interactions between classical cadherins and the intermediate filament cytoskeleton, linked through desmoplakin. In the developing lens, which has no desmosomes, we discovered that vimentin became linked to N-cadherin complexes in a differentiation-state specific manner. This newly identified junctional complex was tissue specific but not unique to the lens. To determine whether in this junction N-cadherin was linked to vimentin through γ-catenin or β-catenin we developed an innovative “double” immunoprecipitation technique. This approach made possible, for the first time, the separation of N-cadherin/γ-catenin from N-cadherin/β-catenin complexes and the identification of multiple members of each of these isolated protein complexes. The study revealed that vimentin was associated exclusively with N-cadherin/γ-catenin junctions. Assembly of this novel class of cadherin junctions was coincident with establishment of the unique cytoarchitecture of lens fiber cells. In addition, γ-catenin had a distinctive localization to the vertices of these hexagonally shaped differentiating lens fiber cells, a region devoid of actin; while β-catenin co-localized with actin at lateral cell interfaces. We believe this novel vimentin-linked N-cadherin/γ-catenin junction provides the tensile strength necessary to establish and maintain structural integrity in tissues that lack desmosomes.
Keywords:γ-catenin  Cadherin  Intermediate filament  Vimentin  Lens development  Lens fiber cell differentiation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号