首页 | 本学科首页   官方微博 | 高级检索  
     


Notch signaling regulates growth and differentiation in the mammalian lens
Authors:Rowan Sheldon  Conley Kevin W  Le Tien T  Donner Amy L  Maas Richard L  Brown Nadean L
Affiliation:a Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
b Division of Developmental Biology, Children’s Hospital Research Foundation, Departments of Pediatrics and Ophthalmology University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-7007, USA
Abstract:The Notch signal transduction pathway regulates the decision to proliferate versus differentiate. Although there are a myriad of mouse models for the Notch pathway, surprisingly little is known about how these genes regulate early eye development, particularly in the anterior lens. We employed both gain-of-function and loss-of-function approaches to determine the role of Notch signaling in lens development. Here we analyzed mice containing conditional deletion of the Notch effector Rbpj or overexpression of the activated Notch1 intracellular domain during lens formation. We demonstrate distinct functions for Notch signaling in progenitor cell growth, fiber cell differentiation and maintenance of the transition zone. In particular, Notch signaling controls the timing of primary fiber cell differentiation and is essential for secondary fiber cell differentiation. Either gain or loss of Notch signaling leads to formation of a dysgenic lens, which in loss-of-function mice undergoes a profound postnatal degeneration. Our data suggest both Cyclin D1 and Cyclin D2, and the p27Kip1 cyclin-dependent kinase inhibitor act downstream of Notch signaling, and define multiple critical functions for this pathway during lens development.
Keywords:Lens development   Notch signaling   Rbpj   Activated Notch   Growth   Cyclins   CKI
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号