Tumor necrosis factor and IL-1 associated with plasma membranes of activated human monocytes lyse monokine-sensitive but not monokine-resistant tumor cells whereas viable activated monocytes lyse both |
| |
Authors: | Y Ichinose O Bakouche J Y Tsao I J Fidler |
| |
Affiliation: | Department of Cell Biology, University of Texas, Houston 77030. |
| |
Abstract: | The purpose of our study was to determine some of the mechanisms involved in macrophage-mediated lysis of tumorigenic cells. A375 human melanoma cells (A375-R) resistant to lysis mediated by TNF and IL-1 were selected from the TNF- and IL-1-sensitive A375 parental melanoma cells subsequent to continuous (2 mo) exposure to rTNF. Peripheral blood monocytes isolated by centrifugal elutriation from healthy donors were incubated with rIFN-gamma and muramyl dipeptide, with a lipoprotein derived from Escherichia coli (CG-31362) or with LPS for 24 h. These activated monocytes lysed both the A375 (monokine-sensitive) and A375-R (monokine-resistant) melanoma cells. Activated tumoricidal macrophages fixed in 2% paraformaldehyde lysed only the TNF- and IL-1-sensitive A375 cells. These fixed monocytes contained both IL-1 and TNF activities as determined by D10 cell proliferation and L929 cytolysis assays, respectively. Nearly identical results were obtained with preparations of plasma membranes from activated human monocytes. Anti-IL-1 and/or anti-TNF sera neutralized the cytolysis of tumor cells mediated by free monokines, by fixed monocytes, or by plasma membrane preparations. In contrast, anti-TNF and/or anti-IL-1 sera did not inhibit tumor cell lysis by viable activated monocytes. We conclude that IL-1 and TNF molecules associated with the plasma membranes of activated monocytes mediate lysis of susceptible target cells. However, because activated monocytes lysed IL-1-and TNF-resistant target cells, molecules other than these monokines must also be involved in the antitumor activity of monocytes. |
| |
Keywords: | |
|
|