首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores
Authors:TL Buhr  DC McPherson  BW Gutting
Institution:Naval Surface Warfare Center – Dahlgren Division, CBR Concepts and Experimentation, Dahlgren, VA, USA
Abstract:Aims: To compare physical properties of spores that were produced in broth sporulation media at greater than 108 spores ml?1. Methods and Results: Bacillus atrophaeus reproducibly sporulated in nutrient broth (NB) and sporulation salts. Microscopy measurements showed that the spores were 0·68 ± 0·11 μm wide and 1·21 ± 0·18 μm long. Coulter Multisizer (CM3) measurements revealed the spore volumes and volume-equivalent spherical diameters, which were 0·48 ± 0·38 μm3 and 0·97 ± 0·07 μm, respectively. Bacillus cereus reproducibly sporulated in NB, sporulation salts, 200 mmol l?1 glutamate and antifoam. Spores were 0·95 ± 0·11 μm wide and 1·31 ± 0·17 μm long. Spore volumes were 0·78 ± 0·61 μm3 and volume-equivalent spherical diameters were 1·14 ± 0·11 μm. Bacillus atrophaeus spores were hydrophilic and B. cereus spores were hydrophobic. However, spore hydrophobicity was significantly altered after treatment with pH-adjusted bleach. Conclusions: The utility of a CM3 for both quantifying Bacillus spores and measuring spore sizes was demonstrated, although the volume between spore exosporium and spore coat was not measured. This study showed fundamental differences between spores from a Bacillus subtilis- and B. cereus-group species. Significance and Impact of the Study: This is useful for developing standard methods for broth spore production and physical characterization of both living and decontaminated spores.
Keywords:bacillus  decontamination  spore preparation  spore sizes  spore hydrophobicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号