首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats
Authors:Hindell  Jenkins  Keough
Institution:Department of Zoology, University of Melbourne, 3010, Parkville, Australia
Abstract:The role of fish predation in structuring assemblages of fish over unvegetated sand and seagrass was examined using enclosure and exclusion cages to manipulate the abundance of predatory fish from November 1998 to January 1999. In our exclusion experiment, piscivorous fish were excluded from patches of unvegetated sand and seagrass to measure how they altered abundances of small fishes, i.e., fish <10 cm in length. Habitats from which piscivorous fish were excluded contained more small fish than those with partial cages, which in turn contained more fish than uncaged areas. These patterns were consistent between unvegetated sand and seagrass areas, although the relative differences between predator treatments varied with habitat. Overall, small fish were more abundant in unvegetated sand than seagrass. Atherinids and syngnathids were the numerically dominant families of small fish and varied in complex ways amongst habitats and cage treatments. The abundance of atherinids varied inconsistently between cage treatments through time. Only during the final two sampling times did the abundance of atherinids vary significantly across cage treatments. Syngnathids were strongly associated with seagrass and were significantly more abundant in caged than uncaged habitats. In our enclosure experiment, five individuals of a single species of transient piscivorous fish, Western Australian salmon (Arripidae: Arripis truttacea Cuvier), were enclosed in cages to provide an estimate of the potential for this species to impact on small fish. The abundance of small fish varied significantly between cage treatments. Small fish were more abundant in enclosure cages and exclusion cages than uncaged areas; however, there was no difference in the abundance of small fish in enclosure cages and partial cages, and no difference between exclusion cages and partial cages. These patterns were consistent amongst habitats. Atherinids and syngnathids were again the numerically dominant families of small fish; atherinids varied more with cage structure while syngnathids did not vary statistically between cages, blocks (locations within which a single replicate of each cage treatment was applied) or habitats. Dietary analysis of caged A. truttacea demonstrated the potential for this species to influence the assemblage structure of small fish through predation - atherinids were consumed more frequently in unvegetated sand than seagrass, and syngnathids were consumed only in seagrass, where they are most abundant. Observations of significant cage or predation effects depended strongly on the time at which sampling was undertaken. In the case of the atherinids, no predation or cage effects were observed during the first two sampling times, but cage effects and predation effects strongly influenced abundances of fish during the third and fourth sampling times, respectively. Our study suggests that transient piscivorous fish may be important in structuring assemblages of small fish in seagrass and unvegetated sand, and seagrass beds may provide a refuge to fishes. But the importance of habitat complexity and predation, in relation to the potentially confounding effects of cage structure, depends strongly on the time at which treatments are sampled, and the periodicity and multiplicity of sampling should be considered in future predation studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号