首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibitory effect of Ca(2+) on ATP-mediated stimulation of NPR-A-coupled guanylyl cyclase in renal glomeruli from spontaneously hypertensive and normotensive rats.
Authors:G E Woodard  J Zhao  J A Rosado
Affiliation:National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA. GeoffreyW@intra.niddk.nih.gov
Abstract:Atrial natriuretic peptide (ANP) regulates blood pressure mainly through the occupation of the guanylyl cyclase-coupled receptor NPR-A, which requires ATP interaction for maximal activation. This study investigates the effect of extracellular Ca(2+) on ATP-mediated regulation of NPR-A-coupled guanylyl cyclase activity in glomerular membranes from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). ATP induced a significant increase in basal and ANP(1-28)-stimulated guanylyl cyclase activity that was greater in SHR than in WKY. Extracellular Ca(2+) inhibited ATP-stimulated guanylyl cyclase activity in a concentration-dependent manner, but did not modify basal and ANP(1-28)-stimulated guanylyl cyclase activity. In the presence of ATP, NPR-A showed higher affinity for ANP(1-28) and lower Bmax. Ca(2+) did not modify NPR-A-ANP(1-28) binding properties. The different effects of extracellular Ca(2+) on ANP(1-28)- or ATP-mediated guanylyl cyclase activation suggest that these events are differentially regulated. Addition of extracellular Ca(2+) induced similar effects in hypertensive and normotensive rats, suggesting that it is not responsible for the elevated cGMP production observed in SHR.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号