Abstract: | In the study, the role of PKC and Ca++ in vasopressin regulation of the plasma membrane water permeability was studied in the cells of the mouse kidney collecting duct. Coefficient of osmotic water permeability of total cell surface (Pf) was calculated from the initial rate of cell swelling following the osmotic shock caused by changing the medium osmolarity from isotonic to hypotonic (300 mOsm to 200 mOsm). Desmopressin (dDAVP 1 nM) increased the Pf in hydrated mice from 168.4 +/- 11.8 microm/s up to 231.3 +/- 14.7 microm/s. The Ca++ chelator BAPTA prevented the desmopressin-induced increase in water permeability. Inhibition of PKC (Ro-31-8220 0.1 microM) also abolished the desmopressin-stimulated increase of plasma membrane water permeability, whereas inhibitor of PKC alone did not suppress the stimulation of the water permeability by db-cAMP. The PKC activity and calciumdependent second messengers seem to be important for regulation of water permeability by vasopressin. |