首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Density and Gating of Delayed-Rectifier Potassium Channels on Resting Membrane Potential and its Fluctuations
Authors:S Marom  H Salman  V Lyakhov  E Braun
Institution:(1) The Rappaport Faculty of Medicine and the Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel, IL
Abstract:The aim of this study is to evaluate directly, using a reduced experimental system, the nature of interactions between voltage-gated potassium channels and the resting membrane potential. Xenopus oocytes were injected with various concentrations of cRNA coding for a delayed-rectifier potassium channel Shaker-IR. The effects of the density and kinetics of the expressed channels on resting membrane potential is explored in isolated (``inside-out') patches. The channel density is given in terms of maximal conductance (G max), measured from the maximal slope of the I-V curve under voltage clamp conditions. The capacitance of the experimental setup is approximately 1 pF. At high channel densities (G max > 10 pA/mV) the mean membrane potential is stabilized at approximately −60 mV. This resting membrane potential is more than 35 mV positive to the reversal potential for potassium ions under the same experimental conditions. Analyses of voltage clamp experiments indicate that at high channel densities the mean membrane potential is determined by the rates of channel activation and deactivation, but is not affected by the rates involved in the process of slow (C-type) inactivation. In contrast, at lower channel densities membrane potential is very unstable, and its mean value and amplitude of fluctuations are strongly affected by the process of slow (C-type) inactivation. Received: 21 March 1996/Revised: 6 August 1996
Keywords:: Resting potential —  Ion channel —  Inactivation —  Fluctuation —  Xenopus oocyte
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号