首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase.
Authors:I Ceballos-Picot  A Nicole  M Clément  J M Bourre  P M Sinet
Institution:URA CNRS 1335, Laboratoire de Biochimie Génétique, H?pital Necker-Enfants Malades, Paris, France.
Abstract:The aim of our study was first to obtain a comprehensive profile of the brain antioxidant defense potential and peroxidative damage during aging. We investigated copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), seleno-dependent glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R) activities, endogenous and in vitro stimulated lipid peroxidation in 40 brains of control mice divided into 3 age groups: 2 months (young), 12 months (middle-aged) and 28 months (old). We found a positive correlation between age and activities of CuZnSOD (r = 0.47; P < 0.01) and GSH-PX (r = 0.72; P < 0.0001). CuZnSOD and GSH-PX activities are independently regulated during brain aging since temporal changes of these two enzymes do not correlate. No modification in MnSOD activity and basal lipid peroxidation was observed as a function of age. Nevertheless, stimulated lipid peroxidation was significantly higher at 12 months (6.53 +/- 0.71 mumole MDA/g tissue) than at 2 months (5.69 +/- 0.90) and significantly lower at 28 months (5.13 +/- 0.33) than at 12 months. Second, we used genetic manipulations to construct transgenic mice that specifically overexpress CuZnSOD to understand the role of CuZnSOD in neuronal aging. The human CuZnSOD transgene expression was stable during aging. The increased CuZnSOD activity in the brain (1.9-fold) of transgenic mice resulted in an enhanced rate of basal lipid peroxidation and in increased MnSOD activity in the 3 age groups. Other antioxidant enzymes did not exhibit modifications indicating the independence of the regulation between CuZnSOD and glutathione-related enzymes probably due to their different cellular localization in the brain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号