首页 | 本学科首页   官方微博 | 高级检索  
     


Biological phosphorus removal in sequencing batch reactor with single-stage oxic process
Authors:Wang Dong-Bo  Li Xiao-Ming  Yang Qi  Zeng Guang-Ming  Liao De-Xiang  Zhang Jie
Affiliation:

aCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China

Abstract:The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22–1.79 mg L−1 in effluent can be obtained after 4 h aeration when P concentration in influent was about 15–20 mg L−1, the dissolved oxygen (DO) was controlled at 3 ± 0.2 mg L−1 during aerobic phase and pH was maintained 7 ± 0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-β-hydroxyalkanoates (PHA) was almost kept constant at a low level (5–6 mg L−1) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.
Keywords:Biological phosphorus removal   Poly-β-hydroxyalkanoates   Poly-phosphate   Sequencing batch reactor
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号