首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Demographic traits of understory trees and population dynamics of aPicea-Abies forest in Taisetsuzan National Park, northern Japan
Authors:Yasuhiro Kubota
Institution:(1) Department of Biology, Faculty of Science, Tokyo Metropolitan University, 192-03 Hachiohji, Tokyo, Japan;(2) Present address: Center for Ecological Research, Kyoto University, 606-01 Kyoto, Japan
Abstract:The size structure transition matrices ofPicea jezoensis, Picea glehnii andAbies sachalinensis of a sub-boreal forest in Hokkaido, northern Japan were constructed based on the demography of each species (Picea jezoensis andPicea glehnii were dealt with together asPicea) during a 4-year period. Two types of matrices, density-independent and density-dependent population dynamics models, were investigated for evaluating the ‘waiting pattern’ betweenPicea spp. andA. sachalinensis. For the density-dependent model, it was assumed that the demographic traits of understory trees, the recruitment rate, the understory mortality rate and the transition probability from the understory to canopy stages, were regulated by the one-sided competitive effect of canopy trees. The observed size structure ofPicea was almost consistent with the stationary size structure obtained in both the density-independent and the density-dependent models, whereas the observed size structure ofA. sachalinensis was not realized in the two models. The effects of both the transition probability from the understory to canopy stages and the recruitment rate on the dynamics of canopy trees were investigated. ForPicea, two parameters—recruitment rate (e i ) and transition probability from the understory to canopy stages-exponentially affected the dynamics of canopy trees. In contrast, forAbies sachalinensis, the two parameters affected linearly the dynamics of canopy trees. In conclusion, the population dynamics ofPicea andA. sachalinensis was determined by the parameters of the recruitment rate and the transition probability from the understory to canopy stages, relating to waiting patterns of understory trees for future gap formation. InPicea, the demographic parameters of understory trees intensively regulated the dynamics of canopy trees if compared withA. sachalinensis, suggesting that the performance of understory trees plays a key role in the population dynamics ofPicea. This reflects the growth pattern of understory trees in the regeneration of the two species.
Keywords:density-dependence  matrix model  natural disturbance  regeneration niche  waiting pattern
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号