首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing
Institution:1. Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;2. Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;1. Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;2. Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Abstract:Functional gene analysis by using genome editing techniques is limited only in few model insects. Here, we reported an efficient and heritable gene mutagenesis analysis in an important lepidopteran pest, Spodoptera litura, using the CRISPR/Cas9 system. By using this system, we successfully obtained the homozygous S. litura strain by targeting the pheromone binding protein 3 gene (SlitPBP3), which allowed us to elucidate the role of this gene in the olfaction of the female sex pheromones. By co-injection of Cas9 mRNA and sgRNA into S. litura eggs, highly efficient chimera mutation in SlitPBP3 loci was detected both in injected eggs (39.1%) and in the resulting individual moths (87.5%). We used the mutant moths as parents to obtain the G1 offspring and the homozygous mutant strain in G2. The function of SlitPBP3 was explored by Electroantennogram (EAG) recordings with a homozygous mutant strain. The result showed that the EAG responses were significantly decreased in mutant males than in control males when treated with the major sex pheromone component (Z9,E11-14:Ac) and a minor component (Z9-14:Ac) at higher dosages. The results demonstrate that s SlitPBP3 gene plays a minor role in the perception of the female sex pheromones. Furthermore, our study provides a useful methodology with the CRISPR/Cas9 system for gene in vivo functional study, particular for lepidopteran species in which the RNAi approach is not efficient.
Keywords:CRISPR/Cas9 system  Genome editing  Pheromone binding protein 3
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号