首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor.
Authors:N Manolios  F Letourneur  J S Bonifacino  and R D Klausner
Institution:Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.
Abstract:The T-cell antigen receptor (TCR) is a multi-subunit complex consisting of clonotypic heterodimers (TCR-alpha beta or TCR-gamma delta) that are non-covalently linked to at least four invariant chains (CD3-delta, -epsilon, -gamma; and zeta or eta). The ordered process of assembly and the final number of individual chains that comprise the TCR is unclear. In this study, we examined the molecular basis of subunit interactions and the component requirements leading to the formation of a complete TCR. Analysis of transient cotransfections in monkey kidney fibroblasts (COS cells) showed assembly between selective chain pairs. Multiple chain cotransfections demonstrated the formation of stable higher order partial complexes. Assembly of such subcomplexes was facilitated by cooperative interactions between clonotypic and invariant CD3 chains. When zeta was cotransfected with any TCR component, no pairwise interaction was detected. Only when there was coexpression of all of the other TCR chains (TCR-alpha, -beta, CD3- epsilon, -gamma, -delta) did zeta assemble with the TCR complex. Not all chain pairs formed stable heterodimers. For one such pair, lack of assembly is due to the inhibitory effects of negatively charged residues within their transmembrane domains. The combined effects of these interactions probably determine the assembly and the quaternary structure of the TCR complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号