首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The dose-dependent effect of copper-chelating agents on the kinetics of peroxidation of low-density lipoprotein (LDL)
Authors:Pinchuk I  Gal S  Lichtenberg D
Institution:Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
Abstract:Copper-induced peroxidation of lipoproteins involves continuous production of free radicals via a redox cycle of copper. Formation of Cu(I) during Cu(II)-induced peroxidation of LDL was previously demonstrated by accumulation of the colored complexes of Cu(I) in the presence of one of the Cu(I)-specific chelators bathocuproine (BC) or neocuproine (NC). All the studies conducted thus far employed high concentrations of these chelators (chelator/Cu(II) > 10). Under these conditions, at low copper concentrations the chelators prolonged the lag preceding oxidation, whereas at high copper concentrations the chelators shortened the lag. In an attempt to gain understanding of these non-monotonic effects, we have studied systematically the peroxidation of LDL (0.1 microM, 50 microg protein/mL) at varying concentrations of NC or BC over a wide range of concentrations of the chelators and copper. These studies revealed that: (i) At copper concentrations of 5 microM and below, NC prolonged the lag in a monotonic, dose-dependent fashion typical for other complexing agents. However, unlike with other chelators, the maximal rate of oxidation was only slightly reduced (if at all). (ii) At copper concentrations of 15 microM and above, the addition of about 20 microM NC or BC resulted in prolongation of the lag, but this effect became smaller at higher concentrations of the chelators, and at yet higher concentrations the lag became much shorter than that observed in the absence of chelators. Throughout the whole range of NC concentrations, the maximal rate of peroxidation increased monotonically upon increasing the NC concentration. (iii) Unlike in the absence of chelators, the prooxidative effect of copper did not exhibit saturation with respect to copper, up to copper concentrations of 30 microM. Based on these results we conclude that the copper-chelates can partition into the hydrophobic core of LDL particles and induce peroxidation by forming free radicals within the core. This may be significant with respect to the understanding of the possible mechanisms of peroxidation by chelated transition metals in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号