首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for electron transfer via ubiquinone between quinoproteins D-glucose dehydrogenase and alcohol dehydrogenase of Gluconobacter suboxydans
Authors:E Shinagawa  K Matsushita  O Adachi  M Ameyama
Institution:Department of Agricultural Chemistry, Faculty of Agriculture, Yamaguchi University.
Abstract:Gluconobacter suboxydans contains membrane-bound D-glucose and alcohol dehydrogenases (GDH and ADH) as the primary dehydrogenases in the respiratory chain. These enzymes are known to be quinoproteins having pyrroloquinoline quinone as the prosthetic group. GDH reduces an artificial electron acceptor, ferricyanide, in the membrane, but not after solubilization with Triton X-100, while ADH can react with the electron acceptor even after solubilization and further purification. In this study, it has been shown that the ferricyanide reductase activity of GDH is restored by adding the supernatant solubilized with Triton X-100 to the residue, and also by incorporation of purified ADH into the membranes of an ADH-deficient strain. G. suboxydans var. alpha. In addition, the ferricyanide reductase activity of GDH was reconstituted in proteoliposomes from GDH, ADH, and ubiquinone-10. Thus, the results indicated that the electron transfer from GDH to ferricyanide was mediated by ubiquinone and ADH. The data also suggest that GDH and ADH transfer electrons mutually via ubiquinone in the respiratory chain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号