首页 | 本学科首页   官方微博 | 高级检索  
     


Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
Authors:Alexandra Kukat  Sukru Anil Dogan  Daniel Edgar  Arnaud Mourier  Christoph Jacoby  Priyanka Maiti  Jan Mauer  Christina Becker  Katharina Senft  Rolf Wibom  Alexei P. Kudin  Kjell Hultenby  Ulrich Fl?gel  Stephan Rosenkranz  Daniel Ricquier  Wolfram S. Kunz  Aleksandra Trifunovic
Abstract:Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号