首页 | 本学科首页   官方微博 | 高级检索  
     


Non-repair Pathways for Minimizing Protein Isoaspartyl Damage in the Yeast Saccharomyces cerevisiae
Authors:Alexander N. Patananan  Joseph Capri  Julian P. Whitelegge  Steven G. Clarke
Affiliation:From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and ;the §Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
Abstract:The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.
Keywords:Aging   Protein Deamidation   Protein Methylation   Protein Stability   Protein Turnover   Proteolytic Enzyme   Yeast Physiology   Isoaspartyl Residues   Protein l-Isoaspartyl Methyltransferase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号