首页 | 本学科首页   官方微博 | 高级检索  
     


Longevity and antioxidant enzymes,non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study
Authors:R. Pérez-Campo  M. López-Torres  C. Rojas  S. Cadenas  G. Barja
Affiliation:(1) Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University, 28040 Madrid, Spain
Abstract:It has been proposed that antioxidants can be longevity determinants in animals. However, no comprehensive study has been conducted to try to relate free radicals with maximum life span. This study compares the lung tissue of various vertebrate species — amphibia, mammals and birds — showing very different and well known maximum life spans and life energy potentials. The lung antioxidant enzymes superoxide dismutase, catalase, Se-dependent and non-Se-dependent glutathione peroxidases, and glutathione reductase showed significantly negative correlations with maximum life span. The same was observed for the lung antioxidants, reduced glutathione and ascorbate. It is concluded that a generalized decrease in tissue antioxidant capacity is a characteristic of longevous species. It is suggested that a low rate of free radical recycling (free-radical generation and scavenging) can be an important factor involved in the evolution of high maximum animal longevities. A low free-radical production could be responsible for a low rate of damage at critical sites such as mitochondrial DNA.Abbreviations CAT catalase - COX cytochrome oxidase - GPx glutathione peroxidase - GR glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - LEP life energy potential - MDA malondialdehyde - MLSP maximum life span - MR metabolic rate - MW molecular weight - PO2 partial pressure of oxygen - SOD superoxide dismutase - VO2 basal oxygen consumption
Keywords:Life span  Free radicals  Antioxidants  Malondialdehyde  Vertebrate lung
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号