首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallographic and NMR analyses of UvsW and UvsW.1 from bacteriophage T4
Authors:Kerr Iain D  Sivakolundu Sivashankar  Li Zhenmei  Buchsbaum Jeffrey C  Knox Luke A  Kriwacki Richard  White Stephen W
Affiliation:Department of Structural Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA.
Abstract:The uvsWXY system is implicated in the replication and repair of the bacteriophage T4 genome. Whereas the roles of the recombinase (UvsX) and the recombination mediator protein (UvsY) are known, the precise role of UvsW is unclear. Sequence analysis identifies UvsW as a member of the monomeric SF2 helicase superfamily that translocates nucleic acid substrates via the action of two RecA-like motor domains. Functional homologies to Escherichia coli RecG and biochemical analyses have shown that UvsW interacts with branched nucleic acid substrates, suggesting roles in recombination and the rescue of stalled replication forks. A sequencing error at the 3'-end of the uvsW gene has revealed a second, short open reading frame that encodes a protein of unknown function called UvsW.1. We have determined the crystal structure of UvsW to 2.7A and the NMR solution structure of UvsW.1. UvsW has a four-domain architecture with structural homology to the eukaryotic SF2 helicase, Rad54. A model of the UvsW-ssDNA complex identifies structural elements and conserved residues that may interact with nucleic acid substrates. The NMR solution structure of UvsW.1 reveals a dynamic four-helix bundle with homology to the structure-specific nucleic acid binding module of RecQ helicases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号