Effects of adenosine receptor agonists on volume-activated ion transport in pig red cells. |
| |
Authors: | D H Sohn H D Kim |
| |
Affiliation: | Department of Pharmacology, University of Missouri-Columbia 65212. |
| |
Abstract: | Swelling of pig red cells leads to an increase in a chloride-dependent K flux which can be potentiated by cAMP, whereas cell shrinking causes a selective increase in Na movement which is mediated by a Na/H exchanger. We examined the influence of adenosine and adenosine receptor agonists on the volume-sensitive, ouabain-resistant, chloride-dependent K flux, referred to as Rb flux and volume-activated Na/H exchange pathway. It was found that adenosine and adenosine receptor agonists inhibited the Rb flux. N6-cyclohexyl adenosine (CHA) has been found to be the most potent inhibitor with EC50 of approximately 4.5 microM followed by 2-chloroadenosine (Cl-ado) with EC50 of approximately 27 microM and 5'-(N-ethyl)-carboxamido-adenosine (NECA) with EC50 of approximately 185 microM. CHA also inhibits the cAMP-stimulated Rb flux. However, CHA does not alter the basal intracellular cAMP level nor the intracellular cAMP content raised by exogenously added cAMP. In contrast to the adenosine agonist action on the Rb flux, Na/H exchange, which is activated upon cell shrinkage, exhibits a slight stimulation in response to CHA. These findings suggest that the presence of A1 adenosine receptors on the surface of red cells influences the regulation of volume-activated ion transport. |
| |
Keywords: | |
|
|