Consequences of molecular engineering enhanced DNA binding in a DNA repair enzyme. |
| |
Authors: | C Nickell M A Prince R S Lloyd |
| |
Affiliation: | Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146. |
| |
Abstract: | Facilitated one-dimensional diffusion is a general mechanism utilized by several DNA-interactive proteins as they search for their target sites within large domains of nontarget DNA. T4 endonuclease V is a protein which scans DNA in a nonspecifically bound state and processively incises DNA at ultraviolet (UV)-induced pyrimidine dimer sites. An electrostatic contribution to this mechanism of target location has been established. Previous studies indicate that a decrease in the affinity of endonuclease V for nontarget DNA results in a decreased ability to scan DNA and a concomitant decrease in the ability to enhance UV survival in repair-deficient Escherichia coli. This study was designed to question the contrasting effect of an increase in the affinity of endonuclease V for nontarget DNA. With this as a goal, a gradient of increasingly basic amino acid content was created along a proposed endonuclease V-nontarget DNA interface. This incremental increase in positive charge correlated with the stepwise enhancement of nontarget DNA binding, yet inversely correlated with enhanced UV survival in repair-deficient E. coli. Further analysis suggests that the observed reduction in UV survival is consistent with the hypothesis that enhanced nontarget DNA affinity results in reduced pyrimidine dimer-specific recognition and/or binding. The net effect is a reduction in the efficiency of pyrimidine dimer incision. |
| |
Keywords: | |
|
|