首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of a chloride current in the larval epidermis of the beetle Tenebrio molitor
Authors:Watson I  Churchill D  Caveney S
Institution:Department of Zoology, University of Western Ontario, London, Canada
Abstract:Voltage-clamp analysis of single cuticle-attached epidermal cells dissected from the newly-ecdysed mealworm revealed the presence of a large inwardly-rectifying anion (i.e. outwardly-going) current. In many cells this current formed spontaneously on breaking into the cell with the patch pipette when the bath solution was isoosmotic with the pipette solution (415 mosmol/l). The current was evoked rapidly by electrical stimulation or by bathing the cells in hyposmotic saline (335 mosmol/l). The reversal potential of the activated current shifted in agreement with the Nernst prediction for Cl(-) when the transmembrane chloride gradient was altered by partially substituting bath or patch pipette Cl(-) with gluconate(-). Substitution of Na(+) with choline(+) or K(+) with TEA and Ba(+) in the bath or pipette solutions did not alter the reversal potential. Addition of 200 &mgr;mol/l cyclic AMP or 1 mmol/l cyclic GMP to the pipette solution increased the initial current strength and reduced the time taken to reach half peak amplitude from 117 sec to 49 sec and 41 sec, respectively. Cyclic AMP also raised the threshold at which the current developed under hyperosmotic conditions by about 20 mosmol/l. Addition of the Cl(-) channel blockers diphenylamine-2-carboxylic acid (200 &mgr;mmol/l) and diisothiocyanostilbene-2,2'-disulphonic acid (250 &mgr;mol/l) to the bath solution reduced the inwardly-rectifying anion current by 50%. This current was barely detectable in cells prepared from the mid-instar integument. This non-constitutive pattern of expression suggests that cellular Cl(-) efflux (and that of other anions) may be required during moult-cycle specific processes such as moulting fluid formation and cell volume regulation. As the strength of the epidermal anion current could be raised by the exogenous application of cytosolic cyclic nucleotides, the activity of the anion channels responsible for this current may normally be regulated by yet-to-be-identified hormone(s) or neuropeptide(s) acting on this tissue.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号