首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane Damage Induced by Supercritical Carbon Dioxide in Rhodotorula mucilaginosa
Authors:Jun Li  Aiying Wang  Fengmei Zhu  Rui Xu  Xiao Song Hu
Institution:1. College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
2. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
Abstract:To clarify the mechanism of microbial inactivation by supercritical carbon dioxide (SCCO2), membrane damage of Rhodotorula mucilaginosa was investigated within specific pressure (10 Mpa), temperature (37 °C), and treatment time (10–70 min) ranges, including cell morphological structure, membrane permeability and fluidity. SEM and TEM observations showed morphological changes in the cell envelope and intracellular organization after SCCO2 treatment. Increase of membrane permeability was measured as increased uptake of the trypan blue dye with microscopy, and leakage of intracellular substances such as UV-absorbing materials and ions by determining the change of protein and electrical conductivity. The SCCO2 mediated reduction in CFU ml−1 was 0.5–1 log higher at 37 °C and 10 MPa for 60 min in Rose Bengal Medium containing 4 % sodium than a similar treatment in Rose Bengal Medium. Membrane fluidity analyzed by fluorescence polarization method using 1,6-diphenyl-1,3,5-hexatriene showed that the florescence polarization and florescence anisotropy of the SCCO2-treated cells were increased slightly and gently compared with the untreated cells. The correlation between membrane damage and death of cells under SCCO2 was clear, and the membrane damage was a key factor induced the inactivation of cells.
Keywords:Membrane damage  Supercritical carbon dioxide  Rhodotorula mucilaginosa  Mechanism
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号