首页 | 本学科首页   官方微博 | 高级检索  
     


NH4 + transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1
Authors:Masako Chou  Takafumi Matsunaga  Y. Takada  Noriyuki Fukunaga
Affiliation:(1) Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita 10-jo Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan Tel. +81-11-706-2742; Fax +81-11-746-1512 e-mail: ytaka@sci.hokudai.ac.jp, JP
Abstract:NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures. Received: August 1, 1998 / Accepted: October 8, 1998
Keywords:Psychrophilic bacterium  Vibrio  NH4+ transport system  14CH3NH3+ uptake  Nitrogen source for growth
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号