首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The novel murine Ca2+-binding protein,Scarf, is differentially expressed during epidermal differentiation
Authors:Hwang Meeyul  Morasso Maria I
Institution:Developmental Skin Biology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:Calcium (Ca2+) signaling-dependent systems, such as the epidermal differentiation process, must effectively respond to variations in Ca2+ concentration. Members of the Ca2+-binding proteins play a central function in the transduction of Ca2+ signals, exerting their roles through a Ca2+-dependent interaction with their target proteins, spatially and temporally. By performing a suppression subtractive hybridization screen we identified a novel mouse gene, Scarf (skin calmodulin-related factor), which has homology to calmodulin (CaM)-like Ca2+-binding protein genes and is exclusively expressed in differentiating keratinocytes in the epidermis. The Scarf open reading frame encodes a 148-amino acid protein that contains four conserved EF-hand motifs (predicted to be Ca2+-binding domains) and has homology to mouse CaM, human CaM-like protein, hClp, and human CaM-like skin protein, hClsp. The functionality of Scarf EF-hand domains was assayed with a radioactive Ca2+-binding method. By Southern blot and computational genome sequence analysis, a highly related gene, Scarf2, was found 15 kb downstream of Scarf on mouse chromosome 13. The functional Scarf Ca2+-binding domains suggest a role in the regulation of epidermal differentiation through the control of Ca2+-mediated signaling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号