首页 | 本学科首页   官方微博 | 高级检索  
     


Oligotrophic bacteria in ultra-pure water systems: Media selection and process component evaluations
Authors:Robert A. Governal  Moyasar T. Yahya  Charles P. Gerba  Farhang Shadman
Affiliation:(1) Department of Chemical Engineering, University of Arizona, 85721 Tucson, Arizona, USA;(2) Department of Microbiology and Immunology, University of Arizona, Tucson, Arizona, USA
Abstract:Summary Presently, tryptic soy agar (TSA) medium is used in the semiconductor industry to determine the concentration of viable oligotrophic bacteria in ultra-pure water systems. Deionized water from an ultra-pure water pilot plant was evaluated for bacterial growth at specific locations, using a non-selective medium (R2A) designed to detect injured heterotrophic as well as oligotrophic bacteria. Results were compared to those obtained using Tryptic Soy Agar. Statistically greater numbers of bacteria were observed when R2A was used as the growth medium. Total viable bacterial numbers were compared both before and after each treatment step of the recirculating loop to determine their effectiveness in removing bacteria. The reduction in bacterial numbers for the reverse osmosis unit, the ion exchange bed, and the ultraviolet sterilizer were 97.4%, 31.3%, and 72.8%, respectively, using TSA medium, and 98.4%, 78.4%, and 35.8% using R2A medium. The number of viable bacteria increased by 60.7% based on TSA medium and 15.7% based on R2A medium after passage of the water through an in-line 0.2-mgrm pore size nylon filter, probably because of the growth of bacteria on the filter. Our results suggest that R2A medium may give a better representation of the microbial water quality in ultra-pure water systems and therefore a better idea of the effectiveness of the various treatment processes in the control of bacteria.
Keywords:Deionized water  Ultra-pure water  Ozone  Ultra-violet sterilization  Oligotroph  Bacteria  R2A medium
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号