首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Survival of free and alginate-encapsulated Pseudomonas aeruginosa UG2Lr in soil treated with disinfectants
Authors:S C Weir  H Lee  J T Trevors
Institution:Department of Environmental Microbiology, University of Guelph, Guelph, Ontario, Canada
Abstract:Pseudomonas aeruginosa UG2Lr, a rifampicin-resistant strain possessing the luxAB on a chromosomal Tn5 insert, was inoculated into soil microcosms as either free cells or encapsulated in dry alginate beads. A 100-fold increase in cell number g-1 dry soil was observed in microcosms inoculated with alginate-encapsulated UG2Lr after 3 weeks incubation at 22°C compared to microcosms inoculated with free cells. After 98 d, microcosms inoculated with free UG2Lr cells contained 104 cfu g-1 dry soil compared to 107 cfu g-1 dry soil in microcosms inoculated with alginate-encapsulated UG2Lr cells. The effects of disinfectants on both the free and alginate-encapsulated UG2Lr cells were also examined. 1·0% (w/g dry soil) calcium hypochlorite, formaldehyde and Spectrum Clear Bath, were added to microcosms each week for 4 weeks. Formaldehyde killed both free and alginate-encapsulated UG2Lr cells within 14 d after only two amendments. Calcium hypochlorite reduced free UG2Lr cell numbers 10-fold 2 d after initial application; however, the introduced population recovered and was unaffected by subsequent treatments at 7, 14 and 21 d. Alginate-encapsulated UG2Lr cells were not affected by calcium hypochlorite treatment. Spectrum Clear Bath did not kill either free or alginate-encapsulated UG2Lr cells in soil. Alginate encapsulation improved survival of introduced bacteria in soil except in the presence of formaldehyde. Killing genetically-engineered bacteria in soil may be difficult unless a powerful disinfectant such as formaldehyde is used or the genetically-engineered micro-organism is allowed to become non-viable over time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号