首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of benzene oxide in bone marrow and other tissues of F344 rats following metabolism of benzene in vitro and in vivo.
Authors:A B Lindstrom  K Yeowell-O'Connell  S Waidyanatha  T A McDonald  S M Rappaport
Institution:Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, 27599-7400, USA.
Abstract:This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepared from tissues that were either targets of benzene toxicity, i.e. the bone marrow and Zymbal glands, or not targets, i.e. liver and kidneys, of control and acetone-treated F344 rats. No BO or phenol was detected in microsomal preparations of bone marrow or Zymbal glands (less than 0.007 nmol BO/mg protein and 0.7 nmol phenol/mg protein). On the other hand, BO and phenol were readily detected in preparations of liver and kidney microsomes and acetone pretreatment resulted in a 2-fold (kidney) increase or 3.7-fold (liver) increase in production of these metabolites. Initial rates of BO production in the liver isolates were 30 (control) to 50 (acetone-treated) times higher than in the corresponding kidney tissues. The estimated half-life of BO in bone marrow homogenates was 6.0 min and the second-order reaction rate constant was estimated to be 1.35 x 10(-3) l (g bone marrow)(-1) (h)(-1). These kinetic constants were used with measurements of BO-bone marrow adducts in F344 rats, receiving a single gavage dosage of 50-400 mg benzene (kg body weight)(-1) (McDonald, T.M., et al. (1994), Cancer Res. 54, 4907-4914), to predict the bone marrow dose of BO. Among the rats receiving 400 mg (kg body weight) (-1), a BO dose of 1.13 x 10(3) nM BO-h was estimated for the bone marrow, or roughly 40% of the corresponding blood dose predicted from BO-albumin adducts. Together these data suggest that, although BO is not produced at detectable levels in the bone marrow or Zymbal glands of F344 rats, BO is rapidly distributed via the bloodstream to these tissues where it may play a role in toxicity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号