首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of gender on hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and LDL receptor in hereditary analbuminemia
Authors:Shin Youngshin  Vaziri Nosratola D  Willekes Nel  Kim Choong H  Joles Jaap A
Institution:Division of Nephrology and Hypertension, UCI Medical Center, University of California-Irvine, 101 The City Drive, Rt. 81, Orange, CA 92868, USA.
Abstract:Hypoalbuminemia is accompanied by hypercholesterolemia in both nephrotic syndrome and hereditary analbuminemia. Hypercholesterolemia is more severe in the female than in the male Nagase analbuminemic rats (NAR). The sex difference in plasma cholesterol diminishes after ovariectomy (OVX) and reappears after estrogen replacement in the NAR. The molecular mechanism responsible for the sex difference in severity of hypercholesterolemia in NAR is not known and was investigated here. To this end, hepatic hydroxylmethylglutaryl (HMG)-CoA reductase, cholesterol 7alpha-hydroxylase, and LDL receptor were determined in male, female, and OVX female NAR and Sprague-Dawley (SD) rats. Plasma cholesterol, triglycerides, and hepatic HMG-CoA reductase activities were greater in both female and male NAR than in SD rats. This was coupled with upregulation of cholesterol 7alpha-hydroxylase in both male and female NAR compared with SD controls. LDL receptor in male NAR was similar to that in male SD rats but was significantly reduced in female NAR. OVX partially, but significantly, reduced plasma cholesterol and triglyceride levels in female NAR. This was coupled with a significant rise in hepatic cholesterol 7alpha-hydroxylase and a modest increase in hepatic LDL receptor. In contrast, OVX resulted in a mild elevation of plasma cholesterol and no significant changes in total hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, or LDL receptor in female SD rats. Thus the greater severity of hypercholesterolemia in the female NAR appears to be due, in part, to a combination of the constrained compensatory upregulation of cholesterol 7alpha-hydroxylase and LDL receptor deficiency.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号