首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vitamin C protects low-density lipoprotein from homocysteine-mediated oxidation
Authors:Alul Rushdi H  Wood Michael  Longo Joseph  Marcotte Anthony L  Campione Allan L  Moore Michael K  Lynch Sean M
Institution:Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
Abstract:Homocysteine, an atherogenic amino acid, promotes iron-dependent oxidation of low-density lipoprotein (LDL). We investigated whether vitamin C, a physiological antioxidant, could protect LDL from homocysteine-mediated oxidation. LDL (0.2 mg of protein/ml) was incubated at 37 degrees C with homocysteine (1000 microM) and ferric iron (10-100 microM) in either the absence (control) or presence of vitamin C (5-250 microM). Under these conditions, vitamin C protected LDL from oxidation as evidenced by an increased lag time preceding lipid diene formation (> or = 5 vs. 2.5 h for control), decreased thiobarbituric acid-reactive substances accumulation (< or = 19 +/- 1 nmol/mg when vitamin C > or = 10 microM vs. 32 +/- 3 nmol/mg for control, p <.01), and decreased lipoprotein anodic electrophoretic mobility. Near-maximal protection was observed at vitamin C concentrations similar to those in human blood (50-100 microM); also, some protection was observed even at low concentrations (5-10 microM). This effect resulted neither from altered iron redox chemistry nor enhanced recycling of vitamin E in LDL. Instead, similar to previous reports for copper-dependent LDL oxidation, we found that vitamin C protected LDL from homocysteine-mediated oxidation through covalent lipoprotein modification involving dehydroascorbic acid. Protection of LDL from homocysteine-mediated oxidation by vitamin C may have implications for the prevention of cardiovascular disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号