首页 | 本学科首页   官方微博 | 高级检索  
     


Physical and functional interactions between MutY glycosylase homologue (MYH) and checkpoint proteins Rad9-Rad1-Hus1
Authors:Shi Guoli  Chang Dau-Yin  Cheng Chih-Chien  Guan Xin  Venclovas Ceslovas  Lu A-Lien
Affiliation:Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
Abstract:The MYH (MutY glycosylase homologue) increases replication fidelity by removing adenines or 2-hydroxyadenine misincorporated opposite GO (7,8-dihydro-8-oxo-guanine). The 9-1-1 complex (Rad9, Rad1 and Hus1 heterotrimer complex) has been suggested as a DNA damage sensor. Here, we report that hMYH (human MYH) interacts with hHus1 (human Hus1) and hRad1 (human Rad1), but not with hRad9. In addition, interactions between MYH and the 9-1-1 complex, from both the fission yeast Schizosaccharomyces pombe and human cells, are partially interchangeable. The major Hus1-binding site is localized to residues 295-350 of hMYH and to residues 245-293 of SpMYH (S. pombe MYH). Val315 of hMYH and Ile261 of SpMYH play important roles for their interactions with Hus1. hHus1 protein and the 9-1-1 complex of S. pombe can enhance the glycosylase activity of SpMYH. Moreover, the interaction of hMYH-hHus1 is enhanced following ionizing radiation. A significant fraction of the hMYH nuclear foci co-localizes with hRad9 foci in H2O2-treated cells. These results reveal that the 9-1-1 complex plays a direct role in base excision repair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号