首页 | 本学科首页   官方微博 | 高级检索  
     


The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis
Authors:Pip B. Wilson  Gonzalo M. Estavillo  Katie J. Field  Wannarat Pornsiriwong  Adam J. Carroll  Katharine A. Howell  Nick S. Woo  Janice A. Lake  Steven M. Smith  A. Harvey Millar  Susanne von Caemmerer   Barry J. Pogson
Affiliation:Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia;,
Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK;,
Australian Research Council Centre of Excellence in Plant Energy Biology, CMS Building M316, University of Western Australia, Crawley, WA 6009, Australia;, and
Molecular Plant Physiology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
Abstract:An Arabidopsis thaliana drought-tolerant mutant, altered expression of APX2 ( alx8 ), has constitutively increased abscisic acid (ABA) content, increased expression of genes responsive to high light stress and is reported to be drought tolerant. We have identified alx8 as a mutation in SAL1, an enzyme that can dephosphorylate dinucleotide phosphates or inositol phosphates. Previously identified mutations in SAL1, including fiery ( fry1-1 ), were reported as being more sensitive to drought imposed by detachment of rosettes. Here we demonstrate that alx8 , fry1-1 and a T-DNA insertional knockout allele all have markedly increased resistance to drought when water is withheld from soil-grown intact plants. Microarray analysis revealed constitutively altered expression of more than 1800 genes in both alx8 and fry1-1. The up-regulated genes included some characterized stress response genes, but few are inducible by ABA. Metabolomic analysis revealed that both mutants exhibit a similar, dramatic reprogramming of metabolism, including increased levels of the polyamine putrescine implicated in stress tolerance, and the accumulation of a number of unknown, potential osmoprotectant carbohydrate derivatives. Under well-watered conditions, there was no substantial difference between alx8 and Col-0 in biomass at maturity; plant water use efficiency (WUE) as measured by carbon isotope discrimination; or stomatal index, morphology or aperture. Thus, SAL1 acts as a negative regulator of predominantly ABA-independent and also ABA-dependent stress response pathways, such that its inactivation results in altered osmoprotectants, higher leaf relative water content and maintenance of viable tissues during prolonged water stress.
Keywords:drought    water use efficiency    SAL1    Arabidopsis    signal transduction    phosphoinositides (PI)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号