首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease
Authors:Gruia Andreea D  Fischer Stefan  Smith Jeremy C
Institution:stefan.fischer@iwr.uni-heidelberg.de
Abstract:Surface salt bridges are ubiquitous in globular proteins. Their contribution to protein stability has been extensively debated in the past decade. Here, molecular dynamics simulations are performed starting from a non-equilibrium state of Staphylococcal nuclease (SNase) with C-terminal truncation (SNaseDelta). The results indicate a key role in the unfolding of the surface salt bridge between arginine 105 and glutamate 135. Experimentally, SNaseDelta is known to be partially unfolded. However, in simulations over 1 ns at 300 K and over 500 ps at 400 K, SNaseDelta remains stable in the native-like folded conformation, the salt bridge hindering unfolding. When the potential function is altered so as to selectively weaken the salt bridge, which then breaks rapidly at 430 K, the protein starts to unfold. The results suggest that breaking of this salt bridge presents a significant barrier to the unfolding transition of SNaseDelta from a native-like state to the unfolded state. Potential of mean force calculations indicate that the barrier height for this transition is approximately 7 kcal/mol.
Keywords:ionic interactions  protein unfolding  computer simulation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号