首页 | 本学科首页   官方微博 | 高级检索  
     


Estrogen and testosterone have opposing effects on chronic cardiac remodeling and function in mice with myocardial infarction
Authors:Cavasin Maria A  Sankey Steadman S  Yu Ai-Li  Menon Shreevidya  Yang Xiao-Ping
Affiliation:Hypertension and Vascular Research Division, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
Abstract:Premenopausal women are much less prone to develop cardiovascular disease than men of similar age, but this advantage no longer applies after menopause. We previously found that male mice have a significantly higher rate of cardiac rupture than females during the acute phase of myocardial infarction (MI); however, the effects of sexual hormones on chronic remodeling are unknown. We hypothesized that estrogen (E) may protect the heart from chronic remodeling and deterioration of function post-MI, whereas testosterone (T) may have adverse effects. Mice (4 wk old) of both genders were divided into four groups: female groups consisted of 1) sham ovariectomy (S-Ovx) + placebo (P) (S-Ovx + P), 2) S-Ovx + T, 3) Ovx + P, and 4) Ovx + T; and male groups consisted of 1) sham castration (S-Cas)+ P (S-Cas + P), 2) S-Cas + 17beta-estradiol (E), 3) Cas + P, and 4) Cas + E. MI was induced 6 wk later. Echocardiography was performed to assess cardiac function and left ventricular dimensions (LVD). Myocyte cross-sectional area (MCSA) was measured at the end of the study. In females, both testosterone and ovariectomy decreased ejection fraction (EF) and increased LVD, and when combined they aggravated cardiac function and remodeling further. Testosterone significantly increased MCSA. In males, castration or estrogen increased EF and reduced LVD, whereas castration significantly reduced MCSA. Our data suggest that estrogen prevents deterioration of cardiac function and remodeling after MI, but testosterone worsens cardiac dysfunction and remodeling and has a pronounced effect when estrogen levels are reduced.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号