首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Apolipoprotein AI efficiently binds to and mediates cholesterol and phospholipid efflux from human but not rat aortic smooth muscle cells
Authors:Francis G A  Tsujita M  Terry T L
Institution:Lipid and Lipoprotein Research Group, Department of Medicine, University of Alberta, Edmonton, Canada. gordon.francis@ualberta.ca
Abstract:Aortic smooth muscle cells (SMC) from several animal species have been reported to resist depletion of cellular cholesterol by the major apolipoprotein of HDL, apoAI. Resistance of SMC to this protective action of apoAI, if present in humans, could contribute to the overaccumulation of arterial wall cholesterol seen in atherosclerosis. We investigated the ability of human aortic medial SMC to bind and be depleted of cholesterol and phospholipids by apoAI. In contrast to rat aortic SMC, but similar to human fibroblasts, human SMC were readily depleted of cholesterol by apoAI, measured by a marked depletion of intracellular cholesterol available for esterification, and an increase in cholesterol efflux to the medium. Human SMC were also actively depleted of the phospholipids phosphatidylcholine and sphingomyelin by apoAI. In contrast, rat SMC released only a small fraction of these cellular phospholipids to apoAI-containing medium. (125)I-labeled apoAI bound with high affinity and specificity to human SMC, but failed to bind to rat SMC. Similar levels of expression of class B, type I scavenger receptor (SR-BI) and caveolin in human and rat SMC suggested these proteins do not account for the differences in apoAI binding or lipid efflux seen in these cells. An enhancer of apolipoprotein-mediated cholesterol efflux, tyrosyl radical-oxidized HDL, markedly amplified the depletion of cholesterol available for esterification in human SMC compared to HDL, but had no enhanced effect in rat SMC. These results show that human SMC bind and are readily depleted of cellular lipids by apoAI, and suggest that apoAI-mediated cholesterol efflux from arterial SMC may contribute significantly to the circulating pool of HDL cholesterol in vivo. The marked difference in apoAI binding to human and rat arterial SMC provides an excellent model to study the nature of the apoAI-cell binding interaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号