首页 | 本学科首页   官方微博 | 高级检索  
     

基于分段氨基酸组成成分的蛋白质相互作用预测
引用本文:罗丽,张绍武,陈伟,潘泉. 基于分段氨基酸组成成分的蛋白质相互作用预测[J]. 生物物理学报, 2009, 25(4): 282-286
作者姓名:罗丽  张绍武  陈伟  潘泉
作者单位:西北工业大学自动化学院,西安710072
基金项目:国家自然科学基金资助项目; 西北工业大学科技创新项目
摘    要:蛋白质相互作用研究有助于揭示生命过程的许多本质问题,也有助于疾病预防、诊断,对药物研制具有重要的参考价值。文章首先构建出蛋白质作用数据库,提出分段氨基酸组成成分特征提取方法来预测蛋白质相互作用。10CV检验下,基于支持向量机的3段氨基酸组成成分特征提取方法的预测总精度为86.2%,比传统的氨基酸组成成分方法提高2.31个百分点;采用Guo的数据库和检验方法,3段氨基酸组成成分特征提取方法的预测总精度为90.11%,比Guo的自相关函数特征提取方法提高2.75个百分点,从而表明分段氨基酸组成成分特征提取方法可有效地应用于蛋白质相互作用预测。

关 键 词:分段氨基酸组成成分  蛋白质相互作用  支持向量机  10CV检验
收稿时间:2009-05-07
修稿时间:2009-08-02

Predicting protein-protein interaction based on the sequence-segmented amino acid composition
Affiliation:College of Automation, Northwestern Ploytechnical University, 710072 Xi'an, China
Abstract:The research on protein-protein interaction (PPI) can help us to reveal many essential problems of life processes, and also administer to prevention and diagnosis of human's diseases. It has important reference value for drug development. A dataset of protein-protein interactions was constructed firstly, and then the feature extracting method of sequence-segmented amino acid composition (SAAC) was proposed to predict protein-protein interaction in this paper. Based on the support vector machine (SVM), the prediction accuracy of 3 segments SAAC is 86.2% in 10-fold cross-validation (10CV) test, which is 2.31% higher than that of common amino acid composition (AAC) method. Using Guo's database and test method, the prediction accuracy of 3 segments SAAC is 90.11%, which is 2.75% higher than that of Guo's approach. The results show that the SAAC method can predict protein-protein interaction effectively.
Keywords:sequence-segmented amino acid composition  protein-protein interaction  support vector machine  10CV test
点击此处可从《生物物理学报》浏览原始摘要信息
点击此处可从《生物物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号