首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unfolding the unique c-type heme protein, Chlamydomonas reinhardtii cytochrome f
Authors:Sabahi Ali  Wittung-Stafshede Pernilla
Institution:Chemistry Department, Tulane University, 6832 St. Charles Avenue, New Orleans, LA 70118-5698, USA.
Abstract:We have studied the unfolding reaction of cytochrome f from the green alga Chlamydomonas reinhardtii. Cytochrome f is different from all other c-type heme proteins in that it is a large, two-domain protein with predominantly beta-sheet structure. Moreover, the sixth axial ligand to the heme-iron is unique in cytochrome f: it is provided by the N-terminal alpha-amino group. Unfolding of oxidized and reduced cytochrome f by guanidine hydrochloride (GuHCl) was monitored by far-UV circular dichroism (CD), Soret absorption, and tyrosine emission: the same unfolding curves were obtained regardless of method. Neither oxidized nor reduced unfolded cytochrome f can be refolded at neutral pH. At pH 3.5 refolding takes place (upon dilution to lower denaturant concentrations or by electron injection to the unfolded, oxidized form), although the reaction is extremely slow. Reduced cytochrome f appears much more resistant towards denaturant perturbation than the oxidized form (in pH range 7-3.5). The heme in unfolded cytochrome f remains low-spin to pH 4 but turns high-spin at pH 3.5 (presumably due to protonation of the N-terminal amino group). Our results suggest that the unfolding process for cytochrome f is complex, involving kinetically trapped intermediates not resolvable by spectroscopy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号