首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enthalpy changes in the formation of the proton electrochemical potential and its components
Authors:Pu R Y  Wang Y  Chen C H
Institution:Wadsworth Center for Laboratories and Research, New York State Department of Health, and Departments of Chemistry and Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201-0509, USA.
Abstract:Enthalpy changes in the formation of a proton electrochemical potential (Delta mu H+) and its components, DeltapH (proton gradient) and Deltapsi (electrical potential), across two types of E. coli membrane vesicles were investigated. Flow dialysis experiments showed that in 0.1 M KPi, pH 6.6, E. coli GR19N membrane vesicles coupled with d-lactate exhibited 57 mV for DeltapH, 70 mV for Deltapsi, and 127 mV for Delta mu H+. Microcalorimetric measurements revealed that the corresponding enthalpy changes (DeltaH(pH), DeltaH(psi) and DeltaHm) were 3.5, 3.3 and 6.9 kcal/mole, respectively. Moreover, in E. coli ML 308-225 membrane vesicles across which 120mV of Delta mu H+ was generated, values of DeltaH(pH) and DeltaH(psi) were determined as 7.0 and 6.6 kcal/mole, as compared with the previously reported 14.1 kcal/mole for DeltaH(m). Comparisons of these enthalpy data revealed that component enthalpies (DeltaH(pH) and DeltaH(psi)) essentially added up to the total enthalpy (DeltaHm), providing a self-consistent test for the obtained data. In both membranes, the ratio ofDeltaH(psi) to Deltapsi was comparable to that of DeltaH(pH) to DeltapH in the formation of Delta mu H+. These observations indicated that the process of the movement of H+ across the membranes was the major contributor to the observed energetic changes. Moreover, the enthalpy change in the formation of Delta mu H+ was compared with the membranes derived from GR19N and ML 308-225 and coupled with NADH and d-lactate. The results were discussed in terms of trans-membrane phenomena.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号