首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models
Authors:Esmaeil Nezami Alanagh  Ghasem-ali Garoosi  Raheem Haddad  Sara Maleki  Mariana Landín  Pedro Pablo Gallego
Institution:1. Department of Agricultural Biotechnology, Imam Khomeini International University (IKIU), P.O. Box 288, 34149-16818, Qazvin, Islamic Republic of Iran
2. Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago, 15782, Santiago de Compostela, Spain
3. Applied Plant and Soil Biology, Faculty of Biology, University of Vigo, 36310, Vigo, Spain
Abstract:Establishing optimized protocols for micropropagation of some economical plants, such as Prunus sp., is still one of the most important challenges for in vitro plant culture researchers. As an example, micropropagation of GF677 hybrid rootstocks (peach × almond) are extremely dependent on the medium ingredients and a large undesirable proportion of GF677 shoots need to be discarded as a result of hyperhydricity and chlorosis. In this study, an artificial intelligence technique—specifically neurofuzzy logic—has been employed, as a modeling tool, to increase knowledge on the effect of 8 ion macronutrients (NH4 +, NO3 ?, Ca2+, K+, Mg2+, SO4 2?, PO4 2? and Na+; as inputs) on three growth parameters (outputs): total number of shoots per explant, healthy number of shoots per explant, and their bud number. The model delivered new insights, by three sets of IF–THEN rules, pinpointing the key role of NO3 ? and their interactions (NO3 ? × Ca2+ and NO3 ? × Ca2+ × K+) on all growth parameters measured. All growth parameters showed a high correlation ratio between experimental and predicted values being 77.48, 91.78 and 90.78 for total shoots, healthy number and bud number, respectively. Regression coefficients higher than 77 % together with statistical significant ANOVA (p < 0.01) indicated good performance of neurofuzzy logic models. Moreover, The model also can be used for inferring the best combination of ion concentrations to obtain high quality GF677 micropropagated shoots. In conclusion, we assess the utility of neurofuzzy logic technology in modeling complex databases, identifying new complex interactions among macronutrients, and inferring new results and valuable knowledge, which can be applied to design new plant tissue culture media and improve plant micropropagation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号