首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lysine Succinylation of VBS Contributes to Sclerotia Development and Aflatoxin Biosynthesis in Aspergillus flavus
Institution:1. State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences – Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China;2. University of Chinese Academy of Sciences, Beijing, China;3. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
Abstract:Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.
Keywords:lysine succinylation  quantification proteome  natural environments  aflatoxin production  AF"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"aflatoxin  aflatoxin B1  BP"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"biological process  CC"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"cellular component  cDNA"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"complementary DNA  FDR"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"false discovery rate  GO"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"Gene Ontology  H-AF"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"high AF  KEGG"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"Kyoto Encyclopedia of Genes and Genomes  Ksuc"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"lysine succinylation  L-AF"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"low AF  MF"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"molecular function  MS"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"mass spectrometry  PDA"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"potato dextrose agar  PPI"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"protein–protein interaction  PTM"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"post-translational modification  qRT–PCR"}  {"#name":"keyword"  "$":{"id":"kwrd0200"}  "$$":[{"#name":"text"  "_":"quantitative RT–PCR  SM"}  {"#name":"keyword"  "$":{"id":"kwrd0210"}  "$$":[{"#name":"text"  "_":"secondary metabolite  TCA"}  {"#name":"keyword"  "$":{"id":"kwrd0220"}  "$$":[{"#name":"text"  "_":"tricarboxylic acid  TMT"}  {"#name":"keyword"  "$":{"id":"kwrd0230"}  "$$":[{"#name":"text"  "_":"tandem mass tag  VBS"}  {"#name":"keyword"  "$":{"id":"kwrd0240"}  "$$":[{"#name":"text"  "_":"versicolorin B synthase  YES"}  {"#name":"keyword"  "$":{"id":"kwrd0250"}  "$$":[{"#name":"text"  "_":"yeast extract with supplement  YPD"}  {"#name":"keyword"  "$":{"id":"kwrd0260"}  "$$":[{"#name":"text"  "_":"yeast peptone dextrose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号