首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteomic and Biochemical Analyses of the Cotyledon and Root of Flooding-Stressed Soybean Plants
Authors:Setsuko Komatsu  Takahiro Makino  Hiroshi Yasue
Institution:1. National Institute of Crop Science, NARO, Tsukuba, Japan.; 2. Graduate School for the Creation of New Photonics Industries, Hamamatsu, Japan.; 3. National Institute of Agrobiological Sciences, Tsukuba, Japan.; RIKEN Plant Science Center, Japan,
Abstract:

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号